metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C23.22D30, (C2×C30).7D4, (C2×D4).5D15, (C6×D4).13D5, (C2×C4).17D30, (D4×C10).13S3, (D4×C30).24C2, C30.381(C2×D4), (C2×C20).250D6, (C2×C12).249D10, C30.38D4⋊8C2, C30.4Q8⋊36C2, (C22×C6).63D10, (C22×C10).78D6, C30.223(C4○D4), (C2×C60).433C22, (C2×C30).306C23, (C22×Dic15)⋊5C2, C5⋊5(C23.23D6), C22.4(C15⋊7D4), C2.15(D4⋊2D15), C6.102(D4⋊2D5), C15⋊37(C22.D4), C3⋊5(C23.18D10), (C22×C30).19C22, C10.102(D4⋊2S3), C22.57(C22×D15), (C2×Dic15).16C22, C6.106(C2×C5⋊D4), C2.11(C2×C15⋊7D4), (C2×C6).19(C5⋊D4), C10.106(C2×C3⋊D4), (C2×C10).18(C3⋊D4), (C2×C6).302(C22×D5), (C2×C10).301(C22×S3), SmallGroup(480,900)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C23.22D30
G = < a,b,c,d,e | a2=b2=c2=d30=1, e2=cb=bc, ab=ba, dad-1=eae-1=ac=ca, bd=db, be=eb, cd=dc, ce=ec, ede-1=bd-1 >
Subgroups: 692 in 156 conjugacy classes, 55 normal (31 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, C5, C6, C6, C6, C2×C4, C2×C4, D4, C23, C10, C10, C10, Dic3, C12, C2×C6, C2×C6, C2×C6, C15, C22⋊C4, C4⋊C4, C22×C4, C2×D4, Dic5, C20, C2×C10, C2×C10, C2×C10, C2×Dic3, C2×C12, C3×D4, C22×C6, C30, C30, C30, C22.D4, C2×Dic5, C2×C20, C5×D4, C22×C10, Dic3⋊C4, C6.D4, C22×Dic3, C6×D4, Dic15, C60, C2×C30, C2×C30, C2×C30, C10.D4, C23.D5, C22×Dic5, D4×C10, C23.23D6, C2×Dic15, C2×Dic15, C2×C60, D4×C15, C22×C30, C23.18D10, C30.4Q8, C30.38D4, C30.38D4, C22×Dic15, D4×C30, C23.22D30
Quotients: C1, C2, C22, S3, D4, C23, D5, D6, C2×D4, C4○D4, D10, C3⋊D4, C22×S3, D15, C22.D4, C5⋊D4, C22×D5, D4⋊2S3, C2×C3⋊D4, D30, D4⋊2D5, C2×C5⋊D4, C23.23D6, C15⋊7D4, C22×D15, C23.18D10, D4⋊2D15, C2×C15⋊7D4, C23.22D30
(2 145)(4 147)(6 149)(8 121)(10 123)(12 125)(14 127)(16 129)(18 131)(20 133)(22 135)(24 137)(26 139)(28 141)(30 143)(31 107)(33 109)(35 111)(37 113)(39 115)(41 117)(43 119)(45 91)(47 93)(49 95)(51 97)(53 99)(55 101)(57 103)(59 105)(61 195)(63 197)(65 199)(67 201)(69 203)(71 205)(73 207)(75 209)(77 181)(79 183)(81 185)(83 187)(85 189)(87 191)(89 193)(151 231)(153 233)(155 235)(157 237)(159 239)(161 211)(163 213)(165 215)(167 217)(169 219)(171 221)(173 223)(175 225)(177 227)(179 229)
(1 234)(2 235)(3 236)(4 237)(5 238)(6 239)(7 240)(8 211)(9 212)(10 213)(11 214)(12 215)(13 216)(14 217)(15 218)(16 219)(17 220)(18 221)(19 222)(20 223)(21 224)(22 225)(23 226)(24 227)(25 228)(26 229)(27 230)(28 231)(29 232)(30 233)(31 69)(32 70)(33 71)(34 72)(35 73)(36 74)(37 75)(38 76)(39 77)(40 78)(41 79)(42 80)(43 81)(44 82)(45 83)(46 84)(47 85)(48 86)(49 87)(50 88)(51 89)(52 90)(53 61)(54 62)(55 63)(56 64)(57 65)(58 66)(59 67)(60 68)(91 187)(92 188)(93 189)(94 190)(95 191)(96 192)(97 193)(98 194)(99 195)(100 196)(101 197)(102 198)(103 199)(104 200)(105 201)(106 202)(107 203)(108 204)(109 205)(110 206)(111 207)(112 208)(113 209)(114 210)(115 181)(116 182)(117 183)(118 184)(119 185)(120 186)(121 161)(122 162)(123 163)(124 164)(125 165)(126 166)(127 167)(128 168)(129 169)(130 170)(131 171)(132 172)(133 173)(134 174)(135 175)(136 176)(137 177)(138 178)(139 179)(140 180)(141 151)(142 152)(143 153)(144 154)(145 155)(146 156)(147 157)(148 158)(149 159)(150 160)
(1 144)(2 145)(3 146)(4 147)(5 148)(6 149)(7 150)(8 121)(9 122)(10 123)(11 124)(12 125)(13 126)(14 127)(15 128)(16 129)(17 130)(18 131)(19 132)(20 133)(21 134)(22 135)(23 136)(24 137)(25 138)(26 139)(27 140)(28 141)(29 142)(30 143)(31 107)(32 108)(33 109)(34 110)(35 111)(36 112)(37 113)(38 114)(39 115)(40 116)(41 117)(42 118)(43 119)(44 120)(45 91)(46 92)(47 93)(48 94)(49 95)(50 96)(51 97)(52 98)(53 99)(54 100)(55 101)(56 102)(57 103)(58 104)(59 105)(60 106)(61 195)(62 196)(63 197)(64 198)(65 199)(66 200)(67 201)(68 202)(69 203)(70 204)(71 205)(72 206)(73 207)(74 208)(75 209)(76 210)(77 181)(78 182)(79 183)(80 184)(81 185)(82 186)(83 187)(84 188)(85 189)(86 190)(87 191)(88 192)(89 193)(90 194)(151 231)(152 232)(153 233)(154 234)(155 235)(156 236)(157 237)(158 238)(159 239)(160 240)(161 211)(162 212)(163 213)(164 214)(165 215)(166 216)(167 217)(168 218)(169 219)(170 220)(171 221)(172 222)(173 223)(174 224)(175 225)(176 226)(177 227)(178 228)(179 229)(180 230)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180)(181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210)(211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240)
(1 57 154 199)(2 64 155 102)(3 55 156 197)(4 62 157 100)(5 53 158 195)(6 90 159 98)(7 51 160 193)(8 88 161 96)(9 49 162 191)(10 86 163 94)(11 47 164 189)(12 84 165 92)(13 45 166 187)(14 82 167 120)(15 43 168 185)(16 80 169 118)(17 41 170 183)(18 78 171 116)(19 39 172 181)(20 76 173 114)(21 37 174 209)(22 74 175 112)(23 35 176 207)(24 72 177 110)(25 33 178 205)(26 70 179 108)(27 31 180 203)(28 68 151 106)(29 59 152 201)(30 66 153 104)(32 139 204 229)(34 137 206 227)(36 135 208 225)(38 133 210 223)(40 131 182 221)(42 129 184 219)(44 127 186 217)(46 125 188 215)(48 123 190 213)(50 121 192 211)(52 149 194 239)(54 147 196 237)(56 145 198 235)(58 143 200 233)(60 141 202 231)(61 148 99 238)(63 146 101 236)(65 144 103 234)(67 142 105 232)(69 140 107 230)(71 138 109 228)(73 136 111 226)(75 134 113 224)(77 132 115 222)(79 130 117 220)(81 128 119 218)(83 126 91 216)(85 124 93 214)(87 122 95 212)(89 150 97 240)
G:=sub<Sym(240)| (2,145)(4,147)(6,149)(8,121)(10,123)(12,125)(14,127)(16,129)(18,131)(20,133)(22,135)(24,137)(26,139)(28,141)(30,143)(31,107)(33,109)(35,111)(37,113)(39,115)(41,117)(43,119)(45,91)(47,93)(49,95)(51,97)(53,99)(55,101)(57,103)(59,105)(61,195)(63,197)(65,199)(67,201)(69,203)(71,205)(73,207)(75,209)(77,181)(79,183)(81,185)(83,187)(85,189)(87,191)(89,193)(151,231)(153,233)(155,235)(157,237)(159,239)(161,211)(163,213)(165,215)(167,217)(169,219)(171,221)(173,223)(175,225)(177,227)(179,229), (1,234)(2,235)(3,236)(4,237)(5,238)(6,239)(7,240)(8,211)(9,212)(10,213)(11,214)(12,215)(13,216)(14,217)(15,218)(16,219)(17,220)(18,221)(19,222)(20,223)(21,224)(22,225)(23,226)(24,227)(25,228)(26,229)(27,230)(28,231)(29,232)(30,233)(31,69)(32,70)(33,71)(34,72)(35,73)(36,74)(37,75)(38,76)(39,77)(40,78)(41,79)(42,80)(43,81)(44,82)(45,83)(46,84)(47,85)(48,86)(49,87)(50,88)(51,89)(52,90)(53,61)(54,62)(55,63)(56,64)(57,65)(58,66)(59,67)(60,68)(91,187)(92,188)(93,189)(94,190)(95,191)(96,192)(97,193)(98,194)(99,195)(100,196)(101,197)(102,198)(103,199)(104,200)(105,201)(106,202)(107,203)(108,204)(109,205)(110,206)(111,207)(112,208)(113,209)(114,210)(115,181)(116,182)(117,183)(118,184)(119,185)(120,186)(121,161)(122,162)(123,163)(124,164)(125,165)(126,166)(127,167)(128,168)(129,169)(130,170)(131,171)(132,172)(133,173)(134,174)(135,175)(136,176)(137,177)(138,178)(139,179)(140,180)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160), (1,144)(2,145)(3,146)(4,147)(5,148)(6,149)(7,150)(8,121)(9,122)(10,123)(11,124)(12,125)(13,126)(14,127)(15,128)(16,129)(17,130)(18,131)(19,132)(20,133)(21,134)(22,135)(23,136)(24,137)(25,138)(26,139)(27,140)(28,141)(29,142)(30,143)(31,107)(32,108)(33,109)(34,110)(35,111)(36,112)(37,113)(38,114)(39,115)(40,116)(41,117)(42,118)(43,119)(44,120)(45,91)(46,92)(47,93)(48,94)(49,95)(50,96)(51,97)(52,98)(53,99)(54,100)(55,101)(56,102)(57,103)(58,104)(59,105)(60,106)(61,195)(62,196)(63,197)(64,198)(65,199)(66,200)(67,201)(68,202)(69,203)(70,204)(71,205)(72,206)(73,207)(74,208)(75,209)(76,210)(77,181)(78,182)(79,183)(80,184)(81,185)(82,186)(83,187)(84,188)(85,189)(86,190)(87,191)(88,192)(89,193)(90,194)(151,231)(152,232)(153,233)(154,234)(155,235)(156,236)(157,237)(158,238)(159,239)(160,240)(161,211)(162,212)(163,213)(164,214)(165,215)(166,216)(167,217)(168,218)(169,219)(170,220)(171,221)(172,222)(173,223)(174,224)(175,225)(176,226)(177,227)(178,228)(179,229)(180,230), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210)(211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,57,154,199)(2,64,155,102)(3,55,156,197)(4,62,157,100)(5,53,158,195)(6,90,159,98)(7,51,160,193)(8,88,161,96)(9,49,162,191)(10,86,163,94)(11,47,164,189)(12,84,165,92)(13,45,166,187)(14,82,167,120)(15,43,168,185)(16,80,169,118)(17,41,170,183)(18,78,171,116)(19,39,172,181)(20,76,173,114)(21,37,174,209)(22,74,175,112)(23,35,176,207)(24,72,177,110)(25,33,178,205)(26,70,179,108)(27,31,180,203)(28,68,151,106)(29,59,152,201)(30,66,153,104)(32,139,204,229)(34,137,206,227)(36,135,208,225)(38,133,210,223)(40,131,182,221)(42,129,184,219)(44,127,186,217)(46,125,188,215)(48,123,190,213)(50,121,192,211)(52,149,194,239)(54,147,196,237)(56,145,198,235)(58,143,200,233)(60,141,202,231)(61,148,99,238)(63,146,101,236)(65,144,103,234)(67,142,105,232)(69,140,107,230)(71,138,109,228)(73,136,111,226)(75,134,113,224)(77,132,115,222)(79,130,117,220)(81,128,119,218)(83,126,91,216)(85,124,93,214)(87,122,95,212)(89,150,97,240)>;
G:=Group( (2,145)(4,147)(6,149)(8,121)(10,123)(12,125)(14,127)(16,129)(18,131)(20,133)(22,135)(24,137)(26,139)(28,141)(30,143)(31,107)(33,109)(35,111)(37,113)(39,115)(41,117)(43,119)(45,91)(47,93)(49,95)(51,97)(53,99)(55,101)(57,103)(59,105)(61,195)(63,197)(65,199)(67,201)(69,203)(71,205)(73,207)(75,209)(77,181)(79,183)(81,185)(83,187)(85,189)(87,191)(89,193)(151,231)(153,233)(155,235)(157,237)(159,239)(161,211)(163,213)(165,215)(167,217)(169,219)(171,221)(173,223)(175,225)(177,227)(179,229), (1,234)(2,235)(3,236)(4,237)(5,238)(6,239)(7,240)(8,211)(9,212)(10,213)(11,214)(12,215)(13,216)(14,217)(15,218)(16,219)(17,220)(18,221)(19,222)(20,223)(21,224)(22,225)(23,226)(24,227)(25,228)(26,229)(27,230)(28,231)(29,232)(30,233)(31,69)(32,70)(33,71)(34,72)(35,73)(36,74)(37,75)(38,76)(39,77)(40,78)(41,79)(42,80)(43,81)(44,82)(45,83)(46,84)(47,85)(48,86)(49,87)(50,88)(51,89)(52,90)(53,61)(54,62)(55,63)(56,64)(57,65)(58,66)(59,67)(60,68)(91,187)(92,188)(93,189)(94,190)(95,191)(96,192)(97,193)(98,194)(99,195)(100,196)(101,197)(102,198)(103,199)(104,200)(105,201)(106,202)(107,203)(108,204)(109,205)(110,206)(111,207)(112,208)(113,209)(114,210)(115,181)(116,182)(117,183)(118,184)(119,185)(120,186)(121,161)(122,162)(123,163)(124,164)(125,165)(126,166)(127,167)(128,168)(129,169)(130,170)(131,171)(132,172)(133,173)(134,174)(135,175)(136,176)(137,177)(138,178)(139,179)(140,180)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160), (1,144)(2,145)(3,146)(4,147)(5,148)(6,149)(7,150)(8,121)(9,122)(10,123)(11,124)(12,125)(13,126)(14,127)(15,128)(16,129)(17,130)(18,131)(19,132)(20,133)(21,134)(22,135)(23,136)(24,137)(25,138)(26,139)(27,140)(28,141)(29,142)(30,143)(31,107)(32,108)(33,109)(34,110)(35,111)(36,112)(37,113)(38,114)(39,115)(40,116)(41,117)(42,118)(43,119)(44,120)(45,91)(46,92)(47,93)(48,94)(49,95)(50,96)(51,97)(52,98)(53,99)(54,100)(55,101)(56,102)(57,103)(58,104)(59,105)(60,106)(61,195)(62,196)(63,197)(64,198)(65,199)(66,200)(67,201)(68,202)(69,203)(70,204)(71,205)(72,206)(73,207)(74,208)(75,209)(76,210)(77,181)(78,182)(79,183)(80,184)(81,185)(82,186)(83,187)(84,188)(85,189)(86,190)(87,191)(88,192)(89,193)(90,194)(151,231)(152,232)(153,233)(154,234)(155,235)(156,236)(157,237)(158,238)(159,239)(160,240)(161,211)(162,212)(163,213)(164,214)(165,215)(166,216)(167,217)(168,218)(169,219)(170,220)(171,221)(172,222)(173,223)(174,224)(175,225)(176,226)(177,227)(178,228)(179,229)(180,230), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210)(211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,57,154,199)(2,64,155,102)(3,55,156,197)(4,62,157,100)(5,53,158,195)(6,90,159,98)(7,51,160,193)(8,88,161,96)(9,49,162,191)(10,86,163,94)(11,47,164,189)(12,84,165,92)(13,45,166,187)(14,82,167,120)(15,43,168,185)(16,80,169,118)(17,41,170,183)(18,78,171,116)(19,39,172,181)(20,76,173,114)(21,37,174,209)(22,74,175,112)(23,35,176,207)(24,72,177,110)(25,33,178,205)(26,70,179,108)(27,31,180,203)(28,68,151,106)(29,59,152,201)(30,66,153,104)(32,139,204,229)(34,137,206,227)(36,135,208,225)(38,133,210,223)(40,131,182,221)(42,129,184,219)(44,127,186,217)(46,125,188,215)(48,123,190,213)(50,121,192,211)(52,149,194,239)(54,147,196,237)(56,145,198,235)(58,143,200,233)(60,141,202,231)(61,148,99,238)(63,146,101,236)(65,144,103,234)(67,142,105,232)(69,140,107,230)(71,138,109,228)(73,136,111,226)(75,134,113,224)(77,132,115,222)(79,130,117,220)(81,128,119,218)(83,126,91,216)(85,124,93,214)(87,122,95,212)(89,150,97,240) );
G=PermutationGroup([[(2,145),(4,147),(6,149),(8,121),(10,123),(12,125),(14,127),(16,129),(18,131),(20,133),(22,135),(24,137),(26,139),(28,141),(30,143),(31,107),(33,109),(35,111),(37,113),(39,115),(41,117),(43,119),(45,91),(47,93),(49,95),(51,97),(53,99),(55,101),(57,103),(59,105),(61,195),(63,197),(65,199),(67,201),(69,203),(71,205),(73,207),(75,209),(77,181),(79,183),(81,185),(83,187),(85,189),(87,191),(89,193),(151,231),(153,233),(155,235),(157,237),(159,239),(161,211),(163,213),(165,215),(167,217),(169,219),(171,221),(173,223),(175,225),(177,227),(179,229)], [(1,234),(2,235),(3,236),(4,237),(5,238),(6,239),(7,240),(8,211),(9,212),(10,213),(11,214),(12,215),(13,216),(14,217),(15,218),(16,219),(17,220),(18,221),(19,222),(20,223),(21,224),(22,225),(23,226),(24,227),(25,228),(26,229),(27,230),(28,231),(29,232),(30,233),(31,69),(32,70),(33,71),(34,72),(35,73),(36,74),(37,75),(38,76),(39,77),(40,78),(41,79),(42,80),(43,81),(44,82),(45,83),(46,84),(47,85),(48,86),(49,87),(50,88),(51,89),(52,90),(53,61),(54,62),(55,63),(56,64),(57,65),(58,66),(59,67),(60,68),(91,187),(92,188),(93,189),(94,190),(95,191),(96,192),(97,193),(98,194),(99,195),(100,196),(101,197),(102,198),(103,199),(104,200),(105,201),(106,202),(107,203),(108,204),(109,205),(110,206),(111,207),(112,208),(113,209),(114,210),(115,181),(116,182),(117,183),(118,184),(119,185),(120,186),(121,161),(122,162),(123,163),(124,164),(125,165),(126,166),(127,167),(128,168),(129,169),(130,170),(131,171),(132,172),(133,173),(134,174),(135,175),(136,176),(137,177),(138,178),(139,179),(140,180),(141,151),(142,152),(143,153),(144,154),(145,155),(146,156),(147,157),(148,158),(149,159),(150,160)], [(1,144),(2,145),(3,146),(4,147),(5,148),(6,149),(7,150),(8,121),(9,122),(10,123),(11,124),(12,125),(13,126),(14,127),(15,128),(16,129),(17,130),(18,131),(19,132),(20,133),(21,134),(22,135),(23,136),(24,137),(25,138),(26,139),(27,140),(28,141),(29,142),(30,143),(31,107),(32,108),(33,109),(34,110),(35,111),(36,112),(37,113),(38,114),(39,115),(40,116),(41,117),(42,118),(43,119),(44,120),(45,91),(46,92),(47,93),(48,94),(49,95),(50,96),(51,97),(52,98),(53,99),(54,100),(55,101),(56,102),(57,103),(58,104),(59,105),(60,106),(61,195),(62,196),(63,197),(64,198),(65,199),(66,200),(67,201),(68,202),(69,203),(70,204),(71,205),(72,206),(73,207),(74,208),(75,209),(76,210),(77,181),(78,182),(79,183),(80,184),(81,185),(82,186),(83,187),(84,188),(85,189),(86,190),(87,191),(88,192),(89,193),(90,194),(151,231),(152,232),(153,233),(154,234),(155,235),(156,236),(157,237),(158,238),(159,239),(160,240),(161,211),(162,212),(163,213),(164,214),(165,215),(166,216),(167,217),(168,218),(169,219),(170,220),(171,221),(172,222),(173,223),(174,224),(175,225),(176,226),(177,227),(178,228),(179,229),(180,230)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180),(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210),(211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240)], [(1,57,154,199),(2,64,155,102),(3,55,156,197),(4,62,157,100),(5,53,158,195),(6,90,159,98),(7,51,160,193),(8,88,161,96),(9,49,162,191),(10,86,163,94),(11,47,164,189),(12,84,165,92),(13,45,166,187),(14,82,167,120),(15,43,168,185),(16,80,169,118),(17,41,170,183),(18,78,171,116),(19,39,172,181),(20,76,173,114),(21,37,174,209),(22,74,175,112),(23,35,176,207),(24,72,177,110),(25,33,178,205),(26,70,179,108),(27,31,180,203),(28,68,151,106),(29,59,152,201),(30,66,153,104),(32,139,204,229),(34,137,206,227),(36,135,208,225),(38,133,210,223),(40,131,182,221),(42,129,184,219),(44,127,186,217),(46,125,188,215),(48,123,190,213),(50,121,192,211),(52,149,194,239),(54,147,196,237),(56,145,198,235),(58,143,200,233),(60,141,202,231),(61,148,99,238),(63,146,101,236),(65,144,103,234),(67,142,105,232),(69,140,107,230),(71,138,109,228),(73,136,111,226),(75,134,113,224),(77,132,115,222),(79,130,117,220),(81,128,119,218),(83,126,91,216),(85,124,93,214),(87,122,95,212),(89,150,97,240)]])
84 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 5A | 5B | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 10A | ··· | 10F | 10G | ··· | 10N | 12A | 12B | 15A | 15B | 15C | 15D | 20A | 20B | 20C | 20D | 30A | ··· | 30L | 30M | ··· | 30AB | 60A | ··· | 60H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | ··· | 10 | 10 | ··· | 10 | 12 | 12 | 15 | 15 | 15 | 15 | 20 | 20 | 20 | 20 | 30 | ··· | 30 | 30 | ··· | 30 | 60 | ··· | 60 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 2 | 4 | 30 | 30 | 30 | 30 | 60 | 60 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
84 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | - | - | ||||
image | C1 | C2 | C2 | C2 | C2 | S3 | D4 | D5 | D6 | D6 | C4○D4 | D10 | D10 | C3⋊D4 | D15 | C5⋊D4 | D30 | D30 | C15⋊7D4 | D4⋊2S3 | D4⋊2D5 | D4⋊2D15 |
kernel | C23.22D30 | C30.4Q8 | C30.38D4 | C22×Dic15 | D4×C30 | D4×C10 | C2×C30 | C6×D4 | C2×C20 | C22×C10 | C30 | C2×C12 | C22×C6 | C2×C10 | C2×D4 | C2×C6 | C2×C4 | C23 | C22 | C10 | C6 | C2 |
# reps | 1 | 2 | 3 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 4 | 2 | 4 | 4 | 4 | 8 | 4 | 8 | 16 | 2 | 4 | 8 |
Matrix representation of C23.22D30 ►in GL6(𝔽61)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 60 |
60 | 0 | 0 | 0 | 0 | 0 |
0 | 60 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 60 | 0 |
0 | 0 | 0 | 0 | 0 | 60 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 60 | 0 |
0 | 0 | 0 | 0 | 0 | 60 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 47 | 9 | 0 | 0 |
0 | 0 | 22 | 25 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
18 | 52 | 0 | 0 | 0 | 0 |
9 | 43 | 0 | 0 | 0 | 0 |
0 | 0 | 49 | 59 | 0 | 0 |
0 | 0 | 41 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 50 |
0 | 0 | 0 | 0 | 11 | 0 |
G:=sub<GL(6,GF(61))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,60],[60,0,0,0,0,0,0,60,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,60,0,0,0,0,0,0,60],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,60,0,0,0,0,0,0,60],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,47,22,0,0,0,0,9,25,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[18,9,0,0,0,0,52,43,0,0,0,0,0,0,49,41,0,0,0,0,59,12,0,0,0,0,0,0,0,11,0,0,0,0,50,0] >;
C23.22D30 in GAP, Magma, Sage, TeX
C_2^3._{22}D_{30}
% in TeX
G:=Group("C2^3.22D30");
// GroupNames label
G:=SmallGroup(480,900);
// by ID
G=gap.SmallGroup(480,900);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,112,254,219,2693,18822]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^30=1,e^2=c*b=b*c,a*b=b*a,d*a*d^-1=e*a*e^-1=a*c=c*a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=b*d^-1>;
// generators/relations